Computational Complexity of Tensor Nuclear Norm

نویسندگان

  • Shmuel Friedland
  • Lek-Heng Lim
چکیده

The main result of this paper is that the weak membership problem in the unit ball of a given norm is NP-hard if and only if the weak membership problem in the unit ball of the dual norm is NP-hard. Equivalently, the approximation of a given norm is polynomial time if and only if the approximation of the dual norm is polynomial time. Using the NP-hardness of the approximation of spectral norm of tensors we prove that the approximation of nuclear norm of tensors is NP-hard. In addition, we show that bipartite separability of a density matrix is equivalent its corresponding 4-tensor having unit nuclear norm, relating these results to quantum information theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear norm of higher-order tensors

We establish several mathematical and computational properties of the nuclear norm for higher-order tensors. We show that like tensor rank, tensor nuclear norm is dependent on the choice of base field — the value of the nuclear norm of a real 3-tensor depends on whether we regard it as a real 3-tensor or a complex 3-tensor with real entries. We show that every tensor has a nuclear norm attainin...

متن کامل

Tensor theta norms and low rank recovery

We study extensions of compressive sensing and low rank matrix recovery to the recovery of tensors of low rank from incomplete linear information. While the reconstruction of low rank matrices via nuclear norm minimization is rather well-understand by now, almost no theory is available so far for the extension to higher order tensors due to various theoretical and computational difficulties ari...

متن کامل

Fast Tensor Principal Component Analysis via Proximal Alternating Direction Method with Vectorized Technique

This paper studies the problem of tensor principal component analysis (PCA). Usually the tensor PCA is viewed as a low-rank matrix completion problem via matrix factorization technique, and nuclear norm is used as a convex approximation of the rank operator under mild condition. However, most nuclear norm minimization approaches are based on SVD operations. Given a matrix m n × ∈ X  , the time...

متن کامل

Simultaneous Tensor Completion and Denoising by Noise Inequality Constrained Convex Optimization

Tensor completion is a technique of filling missing elements of the incomplete data tensors. It being actively studied based on the convex optimization scheme such as nuclear-norm minimization. When given data tensors include some noises, the nuclear-norm minimization problem is usually converted to the nuclear-norm ‘regularization’ problem which simultaneously minimize penalty and error terms ...

متن کامل

On the Nuclear Norm and the Singular Value Decomposition of Tensors

Finding the rank of a tensor is a problem that has many applications. Unfortunately it is often very difficult to determine the rank of a given tensor. Inspired by the heuristics of convex relaxation, we consider the nuclear norm instead of the rank of a tensor. We determine the nuclear norm of various tensors of interest. Along the way, we also do a systematic study various measures of orthogo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1410.6072  شماره 

صفحات  -

تاریخ انتشار 2014